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a  b  s  t  r  a  c  t

Urban  land  development  substantially  alters  the terrestrial  carbon  cycle,  particularly  the  net  primary
productivity  (NPP),  from  local  to  global  scales.  However,  limited  attempts  have  been  undertaken  to  elu-
cidate the  differences  in NPP  between  pre-  and  post-urban  land  development  in  China.  In this  paper,  the
terrestrial  NPP  after  urbanization  in  China  was  assessed  by using  the  Carnegie-Ames-Stanford  approach
(CASA),  toward  which  a calibration  was  conducted  for adapting  this  model  on  the  fine-scale  application.
In  addition,  a method  of  neighborhood  proxy  was  applied  to  acquire  the  NPP  in  the  absence  of  urban
land  development,  assuming  that non-urban  lands  can  represent  their  nearby  urban  lands  before  they
were  transformed.  Our  analyses  indicate  that  urban  land  development  had  overall  negative  effects  on
terrestrial NPP.  They  reduced  the  NPP  at an  accelerating  rate of 0.31  ×  10−3 Pg  C  year−1, approximately
hina 5.88%  of  the  annual  reduction  during  the  period  of  2000–2006  in  China.  Furthermore,  these  effects  of
NPP  variations  exhibited  obvious  differences  in the  amounts  and  spatial  distributions.  However,  the  NPP
showed  a  slight  increase  around  some  regions  that  experienced  rapid  urbanization,  as  well  as  the  arid
regions  in  northwest  China.  These  were  probably  caused  by the  effects  of  Urban  Heat  Island  (UHI)  and
Urban  Rain  Island  (URI),  an  introduction  of  faster  growing  exotics,  various  resource  augmentations  and

so on.

. Introduction

Land-use/cover change (LUCC) induced by human activities dra-
atically alters the processes and functions of natural ecosystems,

s well as the services they provide, from local to global scales
Alberti, 2005; Buyantuyev and Wu,  2009). Both tropical deforesta-
ion and temperate cultivation have been widely investigated to
nderstand their effects on the processes of global carbon cycle
DeFries et al., 2002; Huang and Sun, 2006). However, urban land
evelopment, another type of land-use change, which is also world-
ide prevalent, has not been well studied by researchers in global

limate change analysis (Kaye et al., 2005). Despite the occurrence
n less than 3% of global land surface, urban land development
xhibits remarkable effects at a global scale, being responsible for
8% of carbon emissions, 60% of residential water use and so on

Grimm et al., 2008). This phenomenon not only substantially trans-
orms the landscapes, but also alters the biogeochemical cycle and
hotosynthetic productivity of terrestrial ecosystems (Gregg et al.,
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2003; Buyantuyev and Wu,  2009). Thus, it is meaningful to explore
the effects of urban land development on the carbon cycle, and
the adaptive mechanisms of the terrestrial ecosystems in response
to global changes. However, there are limited attempts to address
such problems, especially in the rapidly urbanized regions (Milesi
et al., 2003).

Numerous issues concerning the consequences of urban land
development on carbon cycle can be addressed, including net pri-
mary productivity (NPP) and net ecosystem productivity (NBP).
However, this paper concentrates specifically on how urban land
development affects the terrestrial NPP. The NPP pertains to a pro-
duction of organic compounds, principally through a process of
photosynthetic production. During the past decades, increasing
studies regarding the effects of urban land development on NPP
have been conducted at different scales. At a national scale, con-
sequences of urban land transformation in the United States were
examined by using data from two satellites and a terrestrial carbon
model (Imhoff et al., 2004). They found that urbanization had large
negative impacts on NPP. Additionally, Milesi et al. (2003) inves-
tigated the effects of urban land development in the southeastern
United States on regional NPP through a combination of MODIS

data, DMSP-OLS nighttime light data and Landsat ETM images.
At a city scale, a comparison of the NPP was performed between
natural and anthropogenic land covers in the Phoenix metropoli-
tan region of the USA (Buyantuyev and Wu,  2009). Their findings
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http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
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evealed that urban land development might boost productivity
y introducing highly productive plant communities and weaken-

ng the coupling of plant growth to the naturally occurring cycles
f water and nutrients in arid environments. In terms of China, Xu
t al. (2007) evaluated the effects of urbanization on NPP in Jiangyin
ounty between 1991 and 2002 by using satellite images and a
oreal ecosystem productivity simulator model. Yu et al. (2009)
ook Shenzhen City as a typical case and estimated the influences
f urban sprawl on NPP. However, limited attempts have been
ade to understand the differences in NPP caused by the urban

and development in China. There is a general lack on the studies
f the regional patterns and the causes of the differences for this
hole country. In addition, NPP is primarily dominated by solar

adiation, precipitation, temperature, nitrogen limits, ambient CO2
oncentration, land covers and other local environmental factors
imultaneously and interactively (Cramer et al., 1999; Wang and
oulton, 2009). It is a difficult task to distinguish the contributions
f these influencing factors to the variations of NPP. Especially, the
ethods to isolate the contributions of urban land development

rom that of climate change to the NPP variations have not been
ell explored because of their complexities (Xu et al., 2007; Lu

t al., 2010).
While modeling the NPP, a wide range of models have been

eveloped (Potter et al., 1993; Cramer et al., 1999). Among these
odels, the CASA has been well employed in assessing the ter-

estrial NPP in United States (Lobell et al., 2002), in China (Piao
t al., 2005), as well as at a global scale (Potter et al., 1993). Maxi-
um  light use efficiency (εmax) is considered to be a key parameter

nfluencing the NPP calculations of the CASA (Piao et al., 2001;
hu et al., 2006). Researchers have developed various methods
o determine this factor. For instance, photochemical reflectance
ndex (PRI), which based on the reflectance at 531 and 570 nm,
roved to be effective in deriving the light use efficiency (ε) by
sing both ground spectral measurements and satellite observa-
ions (Nichol et al., 2000; Inoue and Peñuelas, 2006; Goerner et al.,
011). However, PRI showed high sensitivity to various extrane-
us effects such as canopy structure and view observer geometry
Wu et al., 2010; Hilker et al., 2010). In addition, εmax varies with
egetation types, spatial scales and the uniformity of vegetation
overage. There are still many uncertainties in the value of this
arameter. Russell et al. (1989) proposed that εmax varies in the
ange of 1.1–1.4 g C MJ−1 for croplands. Potter et al. (1993) set εmax

o be 0.389 g C MJ−1 for all types of global vegetation via a sin-
le calibration by using AVHRR Normalized Difference Vegetation
ndex (NDVI) satellite data at a resolution of 1 × 1 degree. Zhu et al.
2006) simulated εmax for several typical vegetation types in China
y applying an algorithm of modified least squares function based
n the AVHRR NDVI satellite images at 8-km resolution. Propastin
t al. (2012) simulated ε by using the SeaWiFS NDVI at a resolution
f 4.63 km2. However, the satellite data at a low resolution limits
he applicability of their simulated parameter εmax to investigate
he effects on carbon cycle of such fine-scale phenomenon as urban
and development.

This paper investigates the temporal and spatial distributions
f the NPP in China, together with the dynamics of the NPP from
he pre- to post-urbanization through a combination of satellite
mages, forest inventory data and corresponding ground-based
nformation. One of light use efficiency models, the CASA, was
mployed to estimate the terrestrial NPP after urbanization in
hina. A calibration was performed to obtain εmax for the fine-
cale application of this model by using 1-km MODIS NDVI. While
ssessing the terrestrial NPP before urbanization, we attempted

o apply a method of neighborhood proxy to separate the con-
ributions of urban land development from other factors such as
emperature, precipitation and so on. Consequently, the effects of
rban land development on NPP in China were evaluated, and some
logy 171– 172 (2013) 174– 186 175

analyses were carried out based on vegetation types, dry-wet zones
and so on.

2. Data and preprocessing

2.1. Measurement-based biomass and NPP data

The field-based forest biomass/NPP data, which were widely
used in previous studies (Ni, 2003; Feng et al., 2007), were derived
according to Luo (1996)’s study. The data were mainly compiled
based on the national forest inventories conducted by the Chinese
ministry of forestry during 1989–1993, and some other published
literatures from some intensively studied and well-documented
field sites. In addition, the forest biomass and NPP data consist of
many site-dependent records such as the biomass and NPP for most
of the plant components including stem, branch, leaf, root, as well
as the entire ecosystems. Some other literatures such as latitude,
longitude, elevation, dominant species, stand age, density, volume,
leaf area index, are available as well. The biomass and NPP data
for grassland and shrubland were obtained from several published
works (Jin et al., 2007; Ni, 2004; Togtohyn and Ojima, 1996; Wang
et al., 2011; Yu et al., 2000). These were selected because: (1) a
series of measurements were made at intervals during the grow-
ing season within one year or more; (2) the data on aboveground
and belowground biomass were available. As a result, the values
of corresponding NPP were calculated by using the method of Ni
(2003) based on the maximum and minimum biomass. Most of the
biomass and NPP records were provided in the unit of dry mat-
ter (DM). Thus, a conversion was performed from DM to carbon
content (g C m−2 year−1) by applying a conversion factor of 0.5 for
woody biomass (Myneni et al., 2001), and 0.45 for grassland and
shrubland (Fang et al., 2007).

2.2. Climate datasets from NMIC/CMA and GES DISC

The climate dataset employed in this work, which covers the
period of 2000–2010, includes monthly mean temperature, total
monthly precipitation and monthly solar radiation across China.
Specifically, some historical records of monthly temperature and
precipitation were derived from 752 climatological stations in
China. Monthly solar radiation data were compiled from 122 solar
radiation observation stations. All these data were provided by the
Chinese National Metrological Information Center/China Meteo-
rological Administration (NMIC/CMA). For assuring the continuity
and consistency, we validated these data by screening and elimi-
nating the suspicious and missing records. In addition, the spatial
distributions of these factors are required by the CASA model. As
an important interpolation method, kriging has been widely used
when regionalizing various variables at different scales (Piao et al.,
2001; Zhu et al., 2006). Thus, in terms of the climate factors from
the site-based information, a spatial interpolation of kriging was
applied for each station at a resolution of 0.01 × 0.01 degree. In
addition, the data on Tropical Rainfall Measuring Mission (TRMM)
rainfall product (3B43) from 2001 to 2010 were obtained from
Goddard Earth Sciences Data and Information Services Center (GES
DISC). The TRMM 3B43 data were then averaged for each month of
the 10-year period. Annual total rainfall for each cell was  calculated
based on 3B43’s monthly precipitation rate (mm h−1). As a matter
of convenience, these images were resampled from a resolution of
0.25 × 0.25 degree to 0.01 × 0.01 degree as well, although this did
not increase the effective resolution of the data.
2.3. NDVI and LST data from MODIS

The development of MODIS sensor marked the beginning of
a new era in the remote sensing of the earth for its medium
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Table  1
Maximum light use efficiency (εmax) of the typical vegetation types in China.
ENF, evergreen needleleaf forest; EBF, evergreen broadleaf forest; DNF, decidu-
ous needleleaf forest; DBF, deciduous broadleaf forest; NBMF, needleleaf-broadleaf
mixed forest; DBMF, evergreen-deciduous broadleaf mixed forest; UL, urban lands;
Others, the barren or sparsely vegetation.

Vegetation types εmax (g C MJ−1) Vegetation types εmax (g C MJ−1)

ENF 0.366 Shrub 0.348
EBF 0.630 Grass 0.421
DNF 0.383 Crop 0.421
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DBF 0.478 UL 0.421
NBMF 0.446 Others 0.421
DBMF 0.547

patial, high spectral and temporal resolutions. In this paper, the
DVI images, which cover the period 2001–2010 at a spatial res-
lution of 1 km2, were derived from the MODIS monthly NDVI
roduct (MOD13A3). The 8-day land surface temperature (LST)
ata with the same resolution as NDVI in December for the period
001–2010 in China were also obtained from MODIS LST prod-
ct (MOD11A2). These images were downloaded from the EOS
ata Gateway at the Land Processes Distributed Archive Center

https://lpdaac.usgs.gov/products/modis products table), a part of
ASA’s Earth Observing System Data and Information System.
hese data were then aggregated to geographic grid cells at a reso-
ution of 0.01 × 0.01 degree from their original sinusoidal projection
y using the MODIS reprojection tool (MRT). For examining the spa-
ial distributions of Urban Heat Island (UHI) during the past decade,
he LST data from 2001 to 2010 were averaged to represent the
table heat distributions in this period.

.4. Vegetation map and soil texture data

The spatial distributions of various types of vegetation in China
ere generated from a vegetation map  at a scale of 1:1,000,000

Editorial Board of Vegetation Map  of China, 2001), which was  pri-
arily derived from ground observations. For driving the CASA
odel properly, the original categories of these vegetation types
ere reclassified into 10 classes (Table 1, except for urban lands)

ccording to Potter et al. (1993)’s schema.
In addition, the soil rooting depths for forest vegetation types

ere set to 2.0 m,  and the others were assigned a rooting depth of
.0 m (Potter et al., 1993). Soil texture is also important in determin-

ng the soil water content, and therefore the NPP. The harmonized
orld soil database (HWSD), which was developed by the food and

griculture organization of the United Nations (Freddy et al., 2008),
hows some soil parameters for top- and subsoil, including the frac-
ion of sand/silt/clay, soil organic carbon and so on. The soil texture
lasses and associated particle sizes in this study were compiled
rom the subset of HWSD that covers the whole China at a scale of
:1,000,000. All these data were then aggregated to grid cells at a
esolution of 0.01 × 0.01 degree.

.5. Land use/cover from Landsat TM/ETM+

During the past decades, urban lands in China have increas-
ngly expanded and encroached upon many arable lands (Li, 1998;

eng, 2002). For representing the land use/cover changes in China,
wo land use/cover datasets that cover the years 2000 and 2006
ere employed in this study. The land use/cover dataset in 2000

cross China were obtained from a land use dataset at a scale of 1:
00,000, which were interpreted based on 512 scenes of Landsat
M/ETM+ images in 1999/2000 (Liu et al., 2005). In addition, the
and use/cover data in 2006 were derived from the updating survey

f land use/cover by each province in China according to Jing (2009)
nd Liu et al. (2005)’s methods. All these data were resampled to

 resolution of 0.01 × 0.01 degree as well. Urban lands in China
ere then extracted from these data by using GIS. However, the
logy 171– 172 (2013) 174– 186

classification of these two  land use/cover data toward natural
vegetation does not suit the parameters and structure of the CASA
model. Thus, the distributions of vegetation from the vegetation
map  above were used as the original natural vegetation instead.

3. Methods

3.1. The CASA model

3.1.1. Description of the CASA model
In this paper, we assessed the NPP in China by using the CASA,

which was developed based on the concept of light use efficiency
(Monteith, 1972; Potter et al., 1993). This model can be imple-
mented by using NDVI, temperature, precipitation, solar radiation,
land use/covers and soil texture as input. In detail, the NPP is
calculated as the product of the amount of photosynthetic active
radiation absorbed by green vegetation (APAR) (MJ  m−2) and the
light use efficiency (ε) (gC MJ−1) by which that radiation is con-
verted to plant biomass increment:

NPP(x, t) = APAR × ε (1)

where NPP(x, t) (gC m−2) is the net primary productivity fixed by
vegetation at a grid cell x in month t, and APAR is the amount of
photosynthetic active radiation.

APAR is calculated by using the data on solar surface irradi-
ance S (MJ  m−2) and the fraction of photosynthetic active radiation
absorbed by green vegetation FPAR. The factor ε for each grid cell
can be determined as the product of εmax (g C MJ−1) determined by
a calibration with field data, and scalars representing the availabil-
ity of soil moisture W and the suitability of temperature (T1, T2).
Thus, the NPP in location x and time t becomes:

NPP(x, t) = S(x, t) × FPAR × 0.5 × ε∗ × T1(x, t) × T2(x, t) × W(x, t)

(2)

where the factor 0.5 accounts for the fact that approximately half
of the incoming solar radiation is in the photosynthetic active radi-
ation waveband (0.4–0.7 �m)  (Potter et al., 1993). The FPAR is
defined as a linear function of the NDVI simple ratio SR,

FPAR(x, t) = min
[

SR(x, t) − SRmin

SRmax − SRmin
, 0.95

]
(3)

SR(x, t) = [1 + NDVI(x, t)]
[1 − NDVI(x, t)]

(4)

where SRmin refers to the factor SR for unvegetated land areas,
and SRmax approximates the values of SR when all downwelling
solar radiation is intercepted. These two factors are determined
according to the schema in Potter et al. (1993)’s study.

Additionally, the effect of temperature stresses is regulated by
the monthly mean temperature (T) (◦C) and the temperature when
NDVI reaches its maximum in the whole year (Topt) (◦C). The tem-
perature factors T1 and T2 are calculated as:

T1(x, t) = 0.8 + 0.02 × Topt(x) − 0.0005 × Topt(x) × Topt(x) (5)

T2(x, t) = 1.1814

{1 + e[0.2(Topt (x)−10−T(x,t))]}/{1 + e[0.3(−Topt (x)−10+T(x,t))]}
(6)

The moisture stress factor (W)  is determined based on the

monthly averaged climate data and the corresponding soil prop-
erties:

W(x, t) = 0.5 + 0.5EET(x, t)
PET(x, t)

(7)

https://lpdaac.usgs.gov/products/modis_products_table
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here EET (mm)  is derived from a one-layer bucket soil moisture
odel (Potter et al., 1993), and PET (mm)  is calculated with the
ethod of Thornthwait (1948).  The details of the CASA model can

e found in the studies by Potter et al. (1993).

.1.2. Calibration of the CASA model
Given the coarse resolutions of satellite data that most studies

sed, a new calibration of the CASA model was performed to obtain
max by using the 1-km MODIS NDVI data. This calibration was
mplemented for various typical land use/covers in China (Table 1).
s to one of the land use/covers, the errors between observed NPP
nd simulated NPP can be expressed as:

(x) =
j∑

i=1

(mi − nix)2 (8)

here i is the samples of a vegetation type; j is the number of sam-
les of a vegetation type; m represents the observed NPP values;

 is the products of APAR, T1, T2 and W,  x is an unknown variable
epresenting the maximum light use efficiency that needs to be
imulated. By expanding Eq. (8),  E(x) becomes:

(x) =
j∑

i=1

n2
i x2 − 2

j∑
i=1

minix +
j∑

i=1

m2
i (9)

A detailed description of the steps required to do the calibration
an be found in Field et al. (1995) and Zhu et al. (2006).  The values of
max for forest types, shrub and grassland were calculated according
o Eqs. (8) and (9).  However, urban lands in this study were assumed
o be one of sparse “vegetation types” such as grasslands (Zhu et al.,
006; Trusilova and Churkina, 2008), so are the croplands and the
ther land covers. In other words, these land use/covers were all
upposed to have the same εmax as grassland.

.2. Simulation strategies for the impacts of urban land
evelopment on NPP

For exploring the effects of urban land development on NPP in
hina, the amounts and spatial distributions of urban lands were
rstly extracted based on the land use/cover data that were com-
iled from the vegetation map  and Landsat TM/ETM+ images. The
onversion proportions of urban areas from various original land
se/covers were calculated by using the vegetation map  and urban

and-use data. POST-U2006 NPP, PRE-U2000 NPP and PRE-UNOU
PP were then calculated as follows.

.2.1. Average annual NPP as the POST-U2006 NPP
Post-urban conditions refer to the mean states during a period

fter urbanization concerning the conditions of land use, climate
nd so on. While deriving the post-urban NPP in China, the meteo-
ological data during a 10-year period (2001–2010) were used, with
he assumption that these records might reflect current climate
onditions well. In this paper, the post-urban NPP, namely POST-
2006 NPP (NPPPOST-U2006), represents the NPP distributions based
n the land use/covers in 2006 (thus maximum light use efficiency)
nder current climate conditions. That is, monthly and annual NPP
alues during a 10-year period (2001–2010) were calculated by
sing the CASA model based on the maximum light use efficiency,

hich were calibrated with the land use/covers in 2006. After that,

he spatial distributions of average annual NPP during this period
cross China were mapped for representing the POST-U2006 NPP
nder current climate conditions.
logy 171– 172 (2013) 174– 186 177

3.2.2. A method of neighborhood proxy for the calculations of
PRE-NOU and PRE-U2000 NPP

Pre-urban conditions reflect the distributions of the original
vegetation without urban land development. Given that meteoro-
logical conditions vary from time to time, the temporal effects on
NPP of a special disturbance such as urban land development are
different even at same site. These effects depends on the seasonal or
interannual variations of the climate conditions during the period
when the disturbance occurred. For eliminating the effects of cli-
mate factors, the pre-urban NPP was  computed by using a method
of neighborhood proxy. This method assumes that non-urban lands
could represent the best proxy to what the nearby urban lands once
were before they were transformed. The pre-urban NPP, which rep-
resented the NPP that would exist in the absence of urban land
development, was  then computed under the pre-urban conditions
(Imhoff et al., 2004). That is, the mean NPP of the surrounding non-
urban neighborhood of an urban cell was used as a proxy to the
original state of this urban cell before it was transformed. For cov-
ering the non-urban lands around some metropolis such as Beijing,
Shanghai and Guangzhou in China, several neighborhoods with dif-
ferent radius such as 100-km, 120-km and 150-km were tested, and
no significant pre-urban NPP changes were noted by using these
different radiuses. Therefore, a neighborhood of 100-km radius
was selected when calculating the pre-urban NPP for simplicity.
In detail, the pre-urban NPP was calculated by replacing the cur-
rent NPP (post-urban) of urban cells with the average post-urban
NPP of non-urban cells within a 100-km radius of the urban cells
corresponding to their original vegetation types in vegetation map.

In this paper, two  kinds of pre-urban NPP, namely PRE-NOU and
PRE-U2000 NPP, were computed based on the post-urban (POST-
U2006) NPP by using the method of neighborhood proxy. The
PRE-NOU NPP (NPPPRE-NOU) refers to the NPP distributions of the
original vegetation without urban land development, whereas PRE-
U2000 NPP is for the urban areas in 2000 (NPPPRE-U2000). After this,
the differences between the POST-U2006 and these two  pre-urban
NPP (NPPPRE-NOU and NPPPRE-U2000) were calculated to evaluate
the impacts of urban land development on NPP for the period
2000–2006.

3.2.3. Analyses of the regional differences in NPP variations and
their mechanisms

Once the POST-U2006 NPP and the difference maps were con-
structed, several analyses were performed to explore the regional
differences and mechanisms of the NPP variations caused by urban
land development. The magnitudes and proportions of the vari-
ations were counted according to the local conditions such as
vegetation type, dry-wet zone and land use in China. For under-
standing the mechanisms of these variations, the distributions of
LST and rainfall in Yangtze River Delta (YRD) and Pearl River Delta
(PRD) were investigated for urban lands and vegetation, respec-
tively. The differences of LST and rainfall between urban lands and
non-urban areas were also calculated for these two  regions.

4. Results and discussions

4.1. Land-use/cover changes caused by urban land development

In the past decades, urban lands have increasingly expanded
in the process of the rapid economic development in China. Fig. 1
shows the spatial distributions of the land use/covers across this
country in 2006. According to our calculations, urban areas in this

period covered about 44,431 km2 and occupied 0.468% of total land
areas of the whole country. In addition, urban land development in
China was  primarily concentrated in the mid-eastern and south-
east coastal areas with some of the most productive croplands.
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Fig. 1. Spatial distributions of the land use/cover under post

any croplands were transformed to urban areas, accounting for
4% (more than 32,664 km2) of total urban areas of this country
Fig. 2). This implies that urban expansions have caused massive
osses of croplands in China. The similar results are also found in
iu et al. (2005)’s studies.
As shown in Fig. 2, the proportions of urban areas converted
rom various natural vegetation types exhibited large differences
n China. Aside from croplands, evergreen needleleaf forests con-
ributed to urban land development as well. This was  primarily

Fig. 2. Percentages of the land use/cover change conversion from original vege
 conditions in China. Refer to Table 1 for the legend details.

associated with the wide distributions of this vegetation type across
the country. In addition, shrubland and grassland occupied a large
proportion of all the transformed urban areas. These results show
that urban land development, one of the most dramatic landscape
changes across China in recent years, reduced the amounts of culti-

vated lands, forest and so on. Moreover, this reduction could affect
the NPP and even food security of the whole country (Liu et al.,
2005; Gong, 2011). However, other forms of land use/cover changes
(e.g., forest to croplands) might affect the NPP as well.

tation to urban lands across China. Refer to Table 1 for the legend details.
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Fig. 3. Relationships between observed net primary prod

.2. The POST-U2006 NPP under current climate conditions

.2.1. Estimates of maximum light use efficiency
In this paper, the maximum light use efficiency (εmax) was

btained by calibrating the CASA model. Our simulated εmax of sev-
ral typical vegetation types in China are listed in Table 1. They
ary between 0.348 g C MJ−1 for shrub and 0.630 g C MJ−1 for ever-
reen broadleaf forest. These values are mostly within the values
f 0.389 g C MJ−1 proposed by Potter et al. (1993) and the simulated
alues from BIOME-BGC model (Running et al., 2000). In addition,
hese εmax values are a little lower than the results of Zhu et al.
2006). This may  be attributed to the larger conversion factor of
.475 from dry matter (DM) to carbon content (g C m−2 year−1) they
sed.

.2.2. Validation of the NPP calculations
In this paper, the CASA model was employed to simulate the

emporal and spatial distributions of the NPP in China. Verifica-
ion of the reliability for the application of this model in the region
s essential for the use of 1-km MODIS NDVI dataset. Therefore,

e selected the plot sites with the same vegetation types as those
f the vegetation map  used in our study from Luo (1996)’s inves-
igation. A correlation analysis between the NPP calculated from
he CASA and the site-based data was performed for the validation
f our simulated results. As shown in Fig. 3, a good coincidence
an be found between the estimated NPP and the observation-
ased data (r = 0.733, P < 0.001, n = 248). This indicates that the
ASA is applicable to the modeling of the NPP across China. In
ddition, a comparison was conducted between our calculated
PP and other published summaries of NPP studies (Table 2).
he results indicate that our simulated annual NPP of China is
ithin the reported values ranging from 1.95 to 6.13 Pg C year−1

1 Pg C = 1015 g C). According to our study, the POST-U2006 NPP in
hina is 2.54 Pg C year−1, closing to Sun and Zhu (2000)’s results
2.645 Pg C year−1). The estimate of NPP in China from Piao et al.

2001) was 1.95 Pg C year−1 in 1997, which is slightly lower than
ur estimate because of the use of a smaller εmax (0.389 g C MJ−1) for
ll types of vegetation in China (Zhu et al., 2006). In contrast, Chen

able 2
omparisons of our simulated NPP with the results of past studies.

NPP (PgC•year−1) Data period Key references

1 2.645 1992–1993 Sun and Zhu (2000)
2  1.95 1997 Piao et al. (2001)
3  6.13 1990 Chen et al. (2001)
4 3.12 1989–1993 Zhu et al. (2007)
5  2.235 2001 Feng et al. (2007)
6 2.54 2001–2010 This study
ty (NPP) and simulated NPP (r = 0.733, P < 0.001, n = 248).

et al. (2001)’s estimate is much larger. This was probably caused by
the poor quality of the data they employed (Zhu et al., 2007).

4.2.3. Spatial distributions of POST-U2006 NPP
The POST-U2006 NPP in China, which decreased markedly from

southeast to northwest, showed an obvious geographical hetero-
geneity in both the amounts and the spatial distributions (Fig. 4).
In terms of the causes, the heat energy from solar radiation not
only affects the vegetation NPP directly, but also influences the
NPP by its correspondence with water resource. Thus, the dif-
ference of NPP was  associated with the uneven distributions of
the water and heat energy in China. As for individual grid cell,
annual NPP ranged from the values less than 10 g C m−2 year−1

in the desert regions in northwest China to the values greater
than 1600 g C m−2 year−1 in evergreen broadleaf forests in south-
east China. For further elucidating the spatial heterogeneity of
the NPP between urban and non-urban areas, average NPP was
calculated for the three regions that span much of the climate
conditions: humid, semi-humid and semi-arid, and arid regions
(Fig. 5). The selection of this dry-wet schema was roughly based
on the work of Huang (1958) and the committee on natural divi-
sion of the Chinese Academy of Sciences (1959),  followed by
a recombination of these climate zones. Since then, a compar-
ative analysis of the monthly and annual NPP was  performed
between urban and non-urban areas for these three regions
(Fig. 6).

The amounts of the POST-U2006 NPP for urban and non-urban
areas in the humid (region I), semi-humid/semi-arid (region II)
and arid regions (region III) are shown in Fig. 6. It indicates that
temperature and precipitation might be the main drivers of the
terrestrial NPP at the national scale. Generally, in region I with
abundant water and heat, photosynthetic carbon fixation was  high
in both the urban and non-urban areas (270 g C m−2 year−1 and
516 g C m−2 year−1, respectively) under the influences of the south-
east and southwest monsoons. However, in the regions with less
precipitation (region III), the annual NPP was 78 g C m−2 year−1 for
urban areas, and 22 g C m−2 year−1 for non-urban areas. Thus, the
mean NPP of non-urban areas was much lower than that of urban
areas. This might be related to two factors: firstly, the NPP was very
low in the non-urban areas of this region, and some of which even
closed to zero, such as in Taklimakan Desert. Besides, urban areas in
this region, which have good irrigation conditions, were extremely
small, only about 1464 km2. In such situation, natural conditions
(e.g., water and heat) of urban areas were relatively suitable for the

stable NPP in comparison with the non-urban areas. In region II, the
NPP values of urban and non-urban areas (184 g C m−2 year−1 and
214 g C m−2 year−1, respectively) were within the range of regions I
and III because of the transitional climate conditions in this region.
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.2.4. Seasonal dynamics of the POST-U2006 NPP
Monthly variations of the POST-U2006 NPP were analyzed to

eveal the seasonal dynamics of the terrestrial carbon cycle in

hina. These were accomplished by calculating the NPP differences
etween urban and non-urban areas for each month. Figs. 7–9
how the seasonal trends of the monthly NPP in humid, semi-
umid/semi-arid and arid regions. As illustrated, the mean NPP

Fig. 5. Spatial distribution of th
P under post-urban conditions in China.

across China shows obvious seasonal dynamics between urban and
non-urban areas in all the three regions. Near-zero NPP values could
be found in winter (December to February) because of the low tem-

perature and rare precipitation. The mean NPP then exhibited a
continuous increase from spring (March to May) to summer (June
to July), and reached a maximum value in July. This trend might
be explained by the increasing heat and precipitation during the

e dry-wet zones in China.
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Fig. 6. Comparisons of POST-U2006 NPP for urban and non-urban areas in r

rowing season in this region. However, the NPP were reduced
n autumn (September to November) and winter (December to
ebruary), due to the decline of both the temperature and precipi-
ation.
In region I, which covers most of the monsoon regions in
hina, the mean NPP was lower in urban areas than non-urban
reas during the whole year (Fig. 7a). That is, urban land devel-
pment reduced the vegetation NPP even under favorable climate

Fig. 7. Seasonal dynamics of the POST-U2006 NPP in
 I, II and III. I: Humid area; II: semi-humid and semi-arid area; III: arid area.

conditions, mainly by replacing natural vegetation with impervious
surfaces. Conversely, human-sponsored resource augmentations
(e.g., management practices, irrigation and fertilization) did not
have dominant effects on the NPP in urban areas, compared with

the reduction of vegetation cover. As shown in Fig. 7a and b, when
the mean NPP peaked in July, the losses of NPP from urban land
development reached its maximal value as well. This result implies
that urban land development had generally negative effects on NPP.

 region I. Refer to Fig. 6 for the region details.
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t might lead to some net losses even under favorable temperature
nd precipitation.

In region II with a semi-humid and semi-arid climate, the
onthly NPP in urban and non-urban areas were both lower than

he values in region I during most of the periods (Fig. 8a). Urban land
evelopment exhibited as net losses of NPP in the growing season
Fig. 8b). This was possibly caused by the insufficient precipitation
nd heat in this period.

In region III with an arid climate, some of urban areas exhibited
igher NPP than non-urban areas (Fig. 9a). This indicates that urban

and development dramatically influenced the seasonal variations
f NPP in this region. These high NPP might be caused by an intro-
uction of faster growing exotics instead of native plant species
acilitated by ecosystem alterations (Buyantuyev and Wu,  2009),
esource augmentations (such as management practices, irrigation
nd fertilization) and so on. Moreover, since the special location
f non-monsoon zone, melted water from glacial/snow has cru-
ial influences on the discharge regulation of inland rivers in this
egion (Wang and Cheng, 2000). Consequently, temperature has
ubstantial effects on the water supply, and hence on the vegeta-
ion activity. Thus, this factor was responsible for the net increase
f NPP during the warm seasons (April to October) in this region

Fig. 9b).

Take the country as a whole, an obvious temporal and spa-
ial heterogeneity of the NPP variations could be observed in
oth the urban and non-urban areas. The dominant factors of this
ig. 7, but for region II.

heterogeneity exhibited dramatic regional differences. In the
humid region of southeast China, rainfall played an important role
in the NPP, in comparison with the crucial influences of tempera-
ture and water in the northwest arid region.

4.3. Variations of NPP caused by urban land development

Since 1978, China has experienced rapid and unprecedented
urbanization, accompanied by massive urban land development.
This exhibits dramatic effects on the NPP at different scales. For
understanding the effects of urban land development on NPP,
we focused on the conversion from various types of vegeta-
tion to urban lands. Two kinds of pre-urban NPP (NPPPRE-NOU
and NPPPRE-U2000) were simulated. The differences between
the post-urban and pre-urban NPP (NPPPOST-U2006–NPPPRE-NOU,
NPPPOST-U2006–NPPPRE-U2000) were analyzed as well.

As shown in Fig. 10a–d, urban land development in China
underwent substantial NPP losses, and mostly concentrated in
and around some of large urban centers, with a maximal value
of more than 500 g C m−2 year−1. However, this type of land use
might be associated with a slight increase of NPP. This phenomenon
mainly occurred around some of the urban areas that have expe-

rienced rapid urbanization, including YRD and PRD. For exploring
the mechanics of the NPP variations, we investigated the effects of
Urban Rain Island (URI) and Urban Rain Island (URI) in the regions
of YRD and PRD for the period 2001–2010. Table 3 indicates that



F. Pei et al. / Agricultural and Forest Meteorology 171– 172 (2013) 174– 186 183

ls as F

r
i
o
s
N
b
B
(
d
(
I
a
o
a
p
W

T
L
2

V

Fig. 9. The same detai

emarkable effects of UHI occurred in PRD in this period. The URI
n YRD was just the same way as in PRD. However, average LST
f the urban lands in YRD was slight higher than the vegetation,
o was the rainfall in PRD. These indicate that the increases of
PP might be correlated with the effects of UHI and URI caused
y urban land development (Chen et al., 2006; Ding et al., 2010).
esides these, other factors, including the resource augmentations
e.g., management practices, irrigation and fertilization), an intro-
uction of faster growing exotics instead of native plant species
Buyantuyev and Wu,  2009), might also contribute to this increase.
n addition, some of the arid regions in northwest China exhibited
n increase as well (Figs. 10 and 11). In these regions, the increase

f NPP was probably associated with the resource augmentations
nd the influences of some introduced plant species with higher
roductivity facilitated by ecosystem alterations (Buyantuyev and
u,  2009).

able 3
and surface temperature (LST), rainfall as well as the difference between them in the
001–2010.

Region LST(K) 

UL VEG UL-VEG 

YRD 289.1 288.1 1.0 

PRD 305.4 302.2 3.2 

EG represents vegetation areas; UL represents urban lands; VEG-UL represents the diffe
ig. 7, but for region III.

In terms of the difference between NPPPOST-U2006 and
NPPPRE-NOU, the conversion from various types of vegetation to
urban areas resulted in losses of 5.27 × 10−3 Pg C year−1, approx-
imately 0.21% of total POST-U2006 NPP. Especially, these losses
might account for about 4.97% of annual vegetation carbon sinks
and 0.80% of annual carbon emissions from the consumption of
fossil fuel in this country (Fang et al., 2007). As to the differ-
ence between NPPPOST-U2006 and NPPPRE-U2000, the losses reached
3.08 × 10−3 Pg C year−1. This indicates a reduction of NPP at an
accelerating rate of 0.31 × 10−3 Pg C year−1, approximately 5.88%
of the annual reduction in China during the period of 2000–2006.
Thus, a proper regulation of urban land development is in urgent

need for reducing the negative effects on carbon cycle at regional
and even global scales.

In addition, the difference maps between POST-U2006 NPP and
PRE-NOU/PRE-U2000 NPP were extracted for the humid (region I),

 regions of Yangtze River Delta (YRD) and Pearl River Delta (PRD) for the period

Rainfall (mm year−1)

UL VEG UL-VEG

1214.0 1170.0 44.0
1912.9 1898.6 14.3

rence of average LST/annual total rainfall between urban areas and vegetation.
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ig. 10. Spatial distributions of the NPP variations caused by urban land developm
PP  in Pearl River Delta; (b) difference between the POST-U2006 and PRE-NOU NP
etails as b, but for Yangtze River Delta.

emi-humid/semi-arid (region II) and arid regions (region III). As
llustrated by Fig. 11,  the NPP variations were mostly character-
zed by net carbon losses in all these regions. With the reductions
f precipitation from the southeast coastline (region I) to west-
rn inland areas (region III) in China, the losses of NPP showed
n obvious decrease due to the water insufficiency. However, a
light increase of NPP could also be noted, especially in some of
rid regions. This was probably caused by the resource augmen-

ations and the influences of some introduced plant species with
igher productivity.

The NPP variations from urban land development were also
nvestigated according to their corresponding original vegetation

ig. 11. NPP gains/losses caused by urban land development in regions I, II and III.
efer to Fig. 6 for individual region details.
hese were calculated as: (a) difference between the POST-U2006 and PRE-U2000
arl River Delta; (c) the same details as a, but for Yangtze River Delta; (d) the same

types (Fig. 12). According to our calculations of the differences
between POST-U2006 and PRE-U2000 NPP, the conversions from
croplands resulted in losses of 2.37 Tg C (1 Tg C = 1012 g C). How-
ever, the NPP losses based on the differences between POST-U2006
and PRE-NOU NPP reached 3.99 Tg C, approximately 75% of total
NPP reduction. Such losses might be associated with the massive
conversion from croplands to urban land development (Li, 1998;
Weng, 2002; Liu et al., 2005), which exhibits crucial influences on

the food security of the whole country (Liu et al., 2005; Gong, 2011).
Therefore, it is challenging for further studies to model the tempo-
ral and spatial evolutions of both cropland losses and their impacts
on terrestrial NPP.

Fig. 12. NPP gains/losses from urban land development counted by its original veg-
etation. Refer to Table 1 for legend details.
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. Conclusions

Urban land development, which exhibits marked effects on the
errestrial carbon cycle, has been one of the most important types
f land use/cover changes in China in recent years. With the grow-
ng scientific and political interest in the effects of the terrestrial
arbon cycle on global climate changes, it is essential to under-
tand the impacts of urban land development on the carbon cycle,
specially the NPP. In this study, temporal and spatial variations of
he terrestrial NPP induced by urban land development in China, as
ell as their mechanisms were investigated by performing three
PP simulations (namely POST-U2006, PRE-NOU and PRE-U2000
PP). A new calibration was performed by using 1-km MODIS
DVI to obtain the maximum light use efficiency for adapting the
ASA on the fine-scale applications such as urban land develop-
ent. The NPP variations caused by urban land development were

nvestigated by calculating the differences between the post-urban
POST-U2006) and pre-urban (PRE-NOU and PRE-U2000) NPP in
hina, respectively. The overall effect was that it dramatically
educed the NPP of this country. Moreover, our findings also indi-
ated a dramatic geographical heterogeneity in the amounts and
patial distributions between urban and non-urban areas, although
t corresponded well with the local climate and land use/covers
onditions. As to the difference between POST-U2006 and PRE-
OU NPP, the estimated reduction of NPP induced by urban

and development in China was 5.27 × 10−3 Pg C year−1, approx-
mately 0.21% of the POST-U2006 NPP. However, the losses of
PP reached 3.08 × 10−3 Pg C year−1 according to the calculations
f the difference between NPPPOST-U2006 and NPPPRE-U2000. This
ndicated an accelerating NPP reduction of 0.31 × 10−3 Pg C year−1

uring the period of 2000–2006. Particularly, the NPP variations
hat originated from what were croplands exhibited the losses of
.99 Tg C year−1 (NPPPOST-U2006–NPPPRE-NOU) and 2.37 Tg C year−1

NPPPOST-U2006–NPPPRE-U2000), accounting for about 75% and 45%
f total reduction. Such decreases might be associated with the
assive losses of croplands during the rapid urbanization in this

ountry. These quantitative analyses of the NPP variations might
elp to constrain other factors in the process of carbon cycling,

ncluding climate change, deforestation and wildfire. In terms of
patial distributions, the losses of NPP caused by urban land devel-
pment were markedly reduced along with the decrease of the NPP
rom southeast to northwest China. However, the NPP exhibited

 slight increase around some urban areas that undergone rapid
rbanization and some of arid regions. This was probably caused
y the effects of UHI and URI, an introduction of faster growing
xotics instead of native plant species facilitated by ecosystem
lterations, various resource augmentations (e.g., management
ractices, irrigation and fertilization), and so on.

During the past few decades, the process of urbanization is
ccelerating at faster rates than before all over the world, accompa-
ied with a rapid expansion of urban land development (Angel et al.,
005; Davies et al., 2011). Although land use/cover changes (espe-
ially urban land development) have been well modeled (Verburg
t al., 2002; Li et al., 2011a), there are still very limited studies con-
erning the impacts of urban expansion on the terrestrial NPP. This
aper quantitatively analyzed the urban land development and its
ffects on terrestrial NPP in China by using one of the important
atellite-based models. However, it is essential to simulate the spa-
ial and temporal evolutions of land use change in the near future,
s well as their effects on NPP. Coupling some of process-based
PP models (Cramer et al., 1999), instead of satellite-based mod-
ls, with the urban dynamic models such as CLUE-S (Verburg et al.,

002), ANN-CA (Li and Yeh, 2002) and GeoSOS (Li et al., 2011a,b) is

 challenging aspect under the condition of global climate changes.
n our future studies, these works need to be further explored for
he country that experiencing fast urbanization.
logy 171– 172 (2013) 174– 186 185
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